3
Імовірність проти умовного розподілу для байєсівського аналізу
Ми можемо записати теорему Байєса як p(θ|x)=f(X|θ)p(θ)∫θf(X|θ)p(θ)dθp(θ|x)=f(X|θ)p(θ)∫θf(X|θ)p(θ)dθp(\theta|x) = \frac{f(X|\theta)p(\theta)}{\int_{\theta} f(X|\theta)p(\theta)d\theta} де - задній, - умовний розподіл, а - попередній.p(θ|x)p(θ|x)p(\theta|x)f(X|θ)f(X|θ)f(X|\theta)p(θ)p(θ)p(\theta) або p(θ|x)=L(θ|x)p(θ)∫θL(θ|x)p(θ)dθp(θ|x)=L(θ|x)p(θ)∫θL(θ|x)p(θ)dθp(\theta|x) = \frac{L(\theta|x)p(\theta)}{\int_{\theta} L(\theta|x)p(\theta)d\theta} де - задній, - функція ймовірності, а - пріоритетна.p(θ|x)p(θ|x)p(\theta|x)L(θ|x)L(θ|x)L(\theta|x)p(θ)p(θ)p(\theta) Моє запитання Чому баєсівський аналіз робиться за допомогою функції ймовірності, а не умовного розподілу? Чи можете ви …