Чому вірогідність фільтра Кальмана обчислюється з використанням результатів фільтрування замість плавніших результатів?
Я використовую фільтр Кальмана дуже стандартним способом. Система представлена рівнянням стану та рівнянням спостереження .xt+1=Fxt+vt+1xt+1=Fxt+vt+1x_{t+1}=Fx_{t}+v_{t+1}yt=Hxt+Azt+wtyt=Hxt+Azt+wty_{t}=Hx_{t}+Az_{t}+w_{t} Підручники вчать, що після застосування фільтра Кальмана та отримання "прогнозів на крок вперед" (або "відфільтрована оцінка") ми повинні використовувати їх для обчислення ймовірності функції:x^t|t−1x^t|t−1\hat{x}_{t|t-1} fyt|It−1,zt(yt|It−1,zt)=det[2π(HPt|t−1H′+R)]−12exp{−12(yt−Hx^t|t−1−Azt)′(HPt|t−1H′+R)−1(yt−Hx^t|t−1−Azt)}fyt|It−1,zt(yt|It−1,zt)=det[2π(HPt|t−1H′+R)]−12exp{−12(yt−Hx^t|t−1−Azt)′(HPt|t−1H′+R)−1(yt−Hx^t|t−1−Azt)}f_{y_{t}|\mathcal{I}_{t-1},z_{t}}\left(y_{t}|\mathcal{I}_{t-1},z_{t}\right)=\det\left[2\pi\left(HP_{t|t-1}H^{\prime}+R\right)\right]^{-\frac{1}{2}}\exp\left\{ -\frac{1}{2}\left(y_{t}-H\hat{x}_{t|t-1}-Az_{t}\right)^{\prime}\left(HP_{t|t-1}H^{\prime}+R\right)^{-1}\left(y_{t}-H\hat{x}_{t|t-1}-Az_{t}\right)\right\} Моє запитання: Чому функція ймовірності обчислюється за допомогою "відфільтрованої …