Запитання з тегом «ranks»


4
Точність машини для підвищення градієнта зменшується зі збільшенням кількості ітерацій
Я експериментую з алгоритмом машини для підвищення градієнта через caretпакет в Р. Використовуючи невеликий набір даних про вступ до коледжу, я застосував такий код: library(caret) ### Load admissions dataset. ### mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") ### Create yes/no levels for admission. ### mydata$admit_factor[mydata$admit==0] <- "no" mydata$admit_factor[mydata$admit==1] <- "yes" ### Gradient boosting machine …
15 machine-learning  caret  boosting  gbm  hypothesis-testing  t-test  panel-data  psychometrics  intraclass-correlation  generalized-linear-model  categorical-data  binomial  model  intercept  causality  cross-correlation  distributions  ranks  p-value  z-test  sign-test  time-series  references  terminology  cross-correlation  definition  probability  distributions  beta-distribution  inverse-gamma  missing-data  paired-comparisons  paired-data  clustered-standard-errors  cluster-sample  time-series  arima  logistic  binary-data  odds-ratio  medicine  hypothesis-testing  wilcoxon-mann-whitney  unsupervised-learning  hierarchical-clustering  neural-networks  train  clustering  k-means  regression  ordinal-data  change-scores  machine-learning  experiment-design  roc  precision-recall  auc  stata  multilevel-analysis  regression  fitting  nonlinear  jmp  r  data-visualization  gam  gamm4  r  lme4-nlme  many-categories  regression  causality  instrumental-variables  endogeneity  controlling-for-a-variable 

2
Чому тест Манна – Уітні є важливим, коли медіани рівні?
Я отримав результати тесту за рангом Манна-Вітні, який я не розумію. Медіана двох популяцій однакова (6,9). Верхні та нижчі кванти кожної групи населення: 6,64 & 7,2 6.60 & 7.1 Р-значення, отримане в результаті тесту порівняння цих сукупностей, становить 0,007. Чи можуть ці популяції суттєво відрізнятися? Це пов’язано з поширенням про …

1
Caret glmnet vs cv.glmnet
Здається, існує велика плутанина в порівнянні використання glmnetв рамках caretпошуку оптимальної лямбда та використання cv.glmnetтого ж завдання. Поставлено багато питань, наприклад: Класифікаційна модель train.glmnet vs. cv.glmnet? Який правильний спосіб використання glmnet з каретою? Перехресне підтвердження `glmnet` за допомогою` caret` але відповіді не надано, що може бути пов'язано з відтворюваністю питання. …

5
Як виконати імпутацію значень у дуже великій кількості точок даних?
У мене дуже великий набір даних, і близько 5% випадкових значень відсутні. Ці змінні співвідносяться між собою. Наступний приклад набору даних R - це лише іграшковий приклад з манекено-корельованими даними. set.seed(123) # matrix of X variable xmat <- matrix(sample(-1:1, 2000000, replace = TRUE), ncol = 10000) colnames(xmat) <- paste ("M", …
12 r  random-forest  missing-data  data-imputation  multiple-imputation  large-data  definition  moving-window  self-study  categorical-data  econometrics  standard-error  regression-coefficients  normal-distribution  pdf  lognormal  regression  python  scikit-learn  interpolation  r  self-study  poisson-distribution  chi-squared  matlab  matrix  r  modeling  multinomial  mlogit  choice  monte-carlo  indicator-function  r  aic  garch  likelihood  r  regression  repeated-measures  simulation  multilevel-analysis  chi-squared  expected-value  multinomial  yates-correction  classification  regression  self-study  repeated-measures  references  residuals  confidence-interval  bootstrap  normality-assumption  resampling  entropy  cauchy  clustering  k-means  r  clustering  categorical-data  continuous-data  r  hypothesis-testing  nonparametric  probability  bayesian  pdf  distributions  exponential  repeated-measures  random-effects-model  non-independent  regression  error  regression-to-the-mean  correlation  group-differences  post-hoc  neural-networks  r  time-series  t-test  p-value  normalization  probability  moments  mgf  time-series  model  seasonality  r  anova  generalized-linear-model  proportion  percentage  nonparametric  ranks  weighted-regression  variogram  classification  neural-networks  fuzzy  variance  dimensionality-reduction  confidence-interval  proportion  z-test  r  self-study  pdf 

1
Відображення звичайних даних - засоби, медіани та середні ранги
У мене є кілька порядкових даних, які зазвичай не поширюються, тому я вирішив зробити непараметричне тестування за допомогою тесту Манна-Вітні U. Я розглядаю відмінності між групами для семи балів - ці оцінки становлять 0, 1, 2 або 3 для кожного предмета. Мені важко зрозуміти, як відобразити мої дані! Якщо я …

1
Чому Anova () та drop1 () надали різні відповіді для GLMM?
У мене є GLMM форми: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Під час використання drop1(model, test="Chi")я отримую інші результати, ніж якщо я використовую Anova(model, type="III")з автомобільного пакета або summary(model). Ці два останні дають однакові відповіді. Використовуючи купу сфабрикованих даних, я виявив, що …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

2
Чому кореляція Пірсона рангів чинна, незважаючи на припущення про нормальність?
Зараз я читаю припущення щодо кореляцій Пірсона. Важливим припущенням для наступного t-тесту, здається, є те, що обидві змінні походять від звичайних розподілів; якщо цього не зробити, то рекомендується використання альтернативних заходів, таких як Spearman rho. Кореляція Спірмена обчислюється як кореляція Пірсона, лише використовуючи ранги X і Y замість самих X …
Використовуючи наш веб-сайт, ви визнаєте, що прочитали та зрозуміли наші Політику щодо файлів cookie та Політику конфіденційності.
Licensed under cc by-sa 3.0 with attribution required.